Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.051
Filter
1.
Cancers (Basel) ; 16(7)2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38611107

ABSTRACT

Tumor-infiltrating lymphocytes (TILs) are an emerging biomarker predictive of response to immunotherapy across a spectrum of solid organ malignancies. The characterization of TILs in gastric cancer (GC) treated with contemporary, multiagent neoadjuvant chemotherapy (NAC) is understudied. In this retrospective investigation, we analyzed the degree of infiltration, phenotype, and spatial distribution of TILs via immunohistochemistry within resected GC specimens treated with or without NAC at a Western center. We hypothesized that NAC executes immunostimulatory roles, as evidenced by an increased number of anti-tumor TILs in the tumor microenvironment. We found significantly elevated levels of conventional and memory CD8+ T cells, as well as total TILs (CD4+, CD8+, Treg, B cells), within chemotherapy-treated tumors compared with chemotherapy-naïve specimens. We also revealed important associations between survival and pathologic responses with enhanced TIL infiltration. Taken together, our findings advocate for an immunostimulatory role of chemotherapy and underscore the potential synergistic effect of combining chemotherapy with immunotherapy in resectable gastric cancer.

2.
J Alzheimers Dis ; 98(4): 1515-1532, 2024.
Article in English | MEDLINE | ID: mdl-38578893

ABSTRACT

Background: Although sporadic Alzheimer's disease (AD) is a neurodegenerative disorder of unknown etiology, familial AD is associated with specific gene mutations. A commonality between these forms of AD is that both display multiple pathogenic events including cholinergic and lipid dysregulation. Objective: We aimed to identify the relevant lipids and the activity of their related receptors in the frontal cortex and correlating them with cognition during the progression of AD. Methods: MALDI-mass spectrometry imaging (MSI) and functional autoradiography was used to evaluate the distribution of phospholipids/sphingolipids and the activity of cannabinoid 1 (CB1), sphingosine 1-phosphate 1 (S1P1), and muscarinic M2/M4 receptors in the frontal cortex (FC) of people that come to autopsy with premortem clinical diagnosis of AD, mild cognitive impairment (MCI), and no cognitive impairment (NCI). Results: MALDI-MSI revealed an increase in myelin-related lipids, such as diacylglycerol (DG) 36:1, DG 38:5, and phosphatidic acid (PA) 40:6 in the white matter (WM) in MCI compared to NCI, and a downregulation of WM phosphatidylinositol (PI) 38:4 and PI 38:5 levels in AD compared to NCI. Elevated levels of phosphatidylcholine (PC) 32:1, PC 34:0, and sphingomyelin 38:1 were observed in discrete lipid accumulations in the FC supragranular layers during disease progression. Muscarinic M2/M4 receptor activation in layers V-VI decreased in AD compared to MCI. CB1 receptor activity was upregulated in layers V-VI, while S1P1 was downregulated within WM in AD relative to NCI. Conclusions: FC WM lipidomic alterations are associated with myelin dyshomeostasis in prodromal AD, suggesting WM lipid maintenance as a potential therapeutic target for dementia.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/pathology , Cognitive Dysfunction/pathology , Receptor, Muscarinic M4 , Frontal Lobe/diagnostic imaging , Frontal Lobe/pathology , Cholinergic Agents , Lipids
3.
Brain Commun ; 6(2): fcae082, 2024.
Article in English | MEDLINE | ID: mdl-38572270

ABSTRACT

The posterior cingulate cortex (PCC) is a key hub of the default mode network underlying autobiographical memory retrieval, which falters early in the progression of Alzheimer's disease (AD). We recently performed RNA sequencing of post-mortem PCC tissue samples from 26 elderly Rush Religious Orders Study participants who came to autopsy with an ante-mortem diagnosis of no cognitive impairment but who collectively displayed a range of Braak I-IV neurofibrillary tangle stages. Notably, cognitively unimpaired subjects displaying high Braak stages may represent cognitive resilience to AD pathology. Transcriptomic data revealed elevated synaptic and ATP-related gene expression in Braak Stages III/IV compared with Stages I/II, suggesting these pathways may be related to PCC resilience. We also mined expression profiles for small non-coding micro-RNAs (miRNAs), which regulate mRNA stability and may represent an underexplored potential mechanism of resilience through the fine-tuning of gene expression within complex cellular networks. Twelve miRNAs were identified as differentially expressed between Braak Stages I/II and III/IV. However, the extent to which the levels of all identified miRNAs were associated with subject demographics, neuropsychological test performance and/or neuropathological diagnostic criteria within this cohort was not explored. Here, we report that a total of 667 miRNAs are significantly associated (rho > 0.38, P < 0.05) with subject variables. There were significant positive correlations between miRNA expression levels and age, perceptual orientation and perceptual speed. By contrast, higher miRNA levels correlated negatively with semantic and episodic memory. Higher expression of 15 miRNAs associated with lower Braak Stages I-II and 47 miRNAs were associated with higher Braak Stages III-IV, suggesting additional mechanistic influences of PCC miRNA expression with resilience. Pathway analysis showed enrichment for miRNAs operating in pathways related to lysine degradation and fatty acid synthesis and metabolism. Finally, we demonstrated that the 12 resilience-related miRNAs differentially expressed in Braak Stages I/II versus Braak Stages III/IV were predicted to regulate mRNAs related to amyloid processing, tau and inflammation. In summary, we demonstrate a dynamic state wherein differential PCC miRNA levels are associated with cognitive performance and post-mortem neuropathological AD diagnostic criteria in cognitively intact elders. We posit these relationships may inform miRNA transcriptional alterations within the PCC relevant to potential early protective (resilience) or pathogenic (pre-clinical or prodromal) responses to disease pathogenesis and thus may be therapeutic targets.

4.
Environ Sci Technol ; 58(17): 7256-7269, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38641325

ABSTRACT

Through investigating the combined impact of the environmental exposures experienced by an individual throughout their lifetime, exposome research provides opportunities to understand and mitigate negative health outcomes. While current exposome research is driven by epidemiological studies that identify associations between exposures and effects, new frameworks integrating more substantial population-level metadata, including electronic health and administrative records, will shed further light on characterizing environmental exposure risks. Molecular biology offers methods and concepts to study the biological and health impacts of exposomes in experimental and computational systems. Of particular importance is the growing use of omics readouts in epidemiological and clinical studies. This paper calls for the adoption of mechanistic molecular biology approaches in exposome research as an essential step in understanding the genotype and exposure interactions underlying human phenotypes. A series of recommendations are presented to make the necessary and appropriate steps to move from exposure association to causation, with a huge potential to inform precision medicine and population health. This includes establishing hypothesis-driven laboratory testing within the exposome field, supported by appropriate methods to read across from model systems research to human.


Subject(s)
Environmental Exposure , Exposome , Humans , Molecular Biology
5.
Angiogenesis ; 27(2): 173-192, 2024 May.
Article in English | MEDLINE | ID: mdl-38468017

ABSTRACT

C-type lectins, distinguished by a C-type lectin binding domain (CTLD), are an evolutionarily conserved superfamily of glycoproteins that are implicated in a broad range of physiologic processes. The group XIV subfamily of CTLDs are comprised of CD93, CD248/endosialin, CLEC14a, and thrombomodulin/CD141, and have important roles in creating and maintaining blood vessels, organizing extracellular matrix, and balancing pro- and anti-coagulative processes. As such, dysregulation in the expression and downstream signaling pathways of these proteins often lead to clinically relevant pathology. Recently, group XIV CTLDs have been shown to play significant roles in cancer progression, namely tumor angiogenesis and metastatic dissemination. Interest in therapeutically targeting tumor vasculature is increasing and the search for novel angiogenic targets is ongoing. Group XIV CTLDs have emerged as key moderators of tumor angiogenesis and metastasis, thus offering substantial therapeutic promise for the clinic. Herein, we review our current knowledge of group XIV CTLDs, discuss each's role in malignancy and associated potential therapeutic avenues, briefly discuss group XIV CTLDs in the context of two other relevant lectin families, and offer future direction in further elucidating mechanisms by which these proteins function and facilitate tumor growth.


Subject(s)
Lectins, C-Type , Neoplasms , Humans , Angiogenesis , Neovascularization, Pathologic/pathology , Neoplasms/drug therapy , Signal Transduction , Antigens, Neoplasm , Antigens, CD
6.
Environ Int ; 186: 108585, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38521044

ABSTRACT

The chemical burden on the environment and human population is increasing. Consequently, regulatory risk assessment must keep pace to manage, reduce, and prevent adverse impacts on human and environmental health associated with hazardous chemicals. Surveillance of chemicals of known, emerging, or potential future concern, entering the environment-food-human continuum is needed to document the reality of risks posed by chemicals on ecosystem and human health from a one health perspective, feed into early warning systems and support public policies for exposure mitigation provisions and safe and sustainable by design strategies. The use of less-conventional sampling strategies and integration of full-scan, high-resolution mass spectrometry and effect-directed analysis in environmental and human monitoring programmes have the potential to enhance the screening and identification of a wider range of chemicals of known, emerging or potential future concern. Here, we outline the key needs and recommendations identified within the European Partnership for Assessment of Risks from Chemicals (PARC) project for leveraging these innovative methodologies to support the development of next-generation chemical risk assessment.


Subject(s)
Environmental Exposure , Environmental Monitoring , Humans , Environmental Exposure/analysis , Environmental Monitoring/methods , Environmental Monitoring/standards , Environmental Pollutants/analysis , Hazardous Substances/analysis , Mass Spectrometry/methods , Risk Assessment/methods
8.
N Am Spine Soc J ; 17: 100313, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38370337

ABSTRACT

Background: The reported level of lumbar paraspinal intramuscular fat (IMF) in people with low back pain (LBP) varies considerably across studies using conventional T1- and T2-weighted magnetic resonance imaging (MRI) sequences. This may be due to the different thresholding models employed to quantify IMF. In this study we investigated the accuracy and reliability of established (two-component) and novel (three-component) thresholding models to measure lumbar paraspinal IMF from T2-weighted MRI. Methods: In this cross-sectional study, we included MRI scans from 30 people with LBP (50% female; mean (SD) age: 46.3 (15.0) years). Gaussian mixture modelling (GMM) and K-means clustering were used to quantify IMF bilaterally from the lumbar multifidus, erector spinae, and psoas major using two and three-component thresholding approaches (GMM2C; K-means2C; GMM3C; and K-means3C). Dixon fat-water MRI was used as the reference for IMF. Accuracy was measured using Bland-Altman analyses, and reliability was measured using ICC3,1. The mean absolute error between thresholding models was compared using repeated-measures ANOVA and post-hoc paired sample t-tests (α = 0.05). Results: We found poor reliability for K-means2C (ICC3,1 ≤ 0.38), moderate to good reliability for K-means3C (ICC3,1 ≥ 0.68), moderate reliability for GMM2C (ICC3,1 ≥ 0.63) and good reliability for GMM3C (ICC3,1 ≥ 0.77). The GMM (p < .001) and three-component models (p < .001) had smaller mean absolute errors than K-means and two-component models, respectively. None of the investigated models adequately quantified IMF for psoas major (ICC3,1 ≤ 0.01). Conclusions: The performance of automated thresholding models is strongly dependent on the choice of algorithms, number of components, and muscle assessed. Compared to Dixon MRI, the GMM performed better than K-means and three-component performed better than two-component models for quantifying lumbar multifidus and erector spinae IMF. None of the investigated models accurately quantified IMF for psoas major. Future research is needed to investigate the performance of thresholding models in a more heterogeneous clinical dataset and across different sites and vendors.

9.
J Surg Res ; 296: 742-750, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38368775

ABSTRACT

INTRODUCTION: Epstein-Barr virus-associated gastric cancer (EBVaGC) may be a meaningful biomarker for potential benefit from immunotherapy. Further investigation is needed to characterize the immune landscape of EBVaGC. We assessed our institutional frequency of surgically treated EBVaGC and analyzed the immunologic biomarker profile and tumor-infiltrating lymphocyte (TIL) phenotypes of a series of EBVaGC compared to non-EBVaGC cases. METHODS: Available tissue samples from all patients with biopsy-confirmed gastric adenocarcinoma who underwent resection with curative intent from 2012 to 2020 at our institution were collected. In situ hybridization was used to assess EBV status; multiplex immunohistochemistry was performed to assess mismatch repair status, Programmed Death-Ligand 1 (PD-L1) expression, and phenotypic characterization of TILs. RESULTS: Sixty-eight samples were included in this study. EBVaGC was present in 3/68 (4%) patients. Among all patients, 27/68 (40%) had positive PD-L1 expression; two of three (67%) EBVaGC patients exhibited positive PD-L1 expression. Compared to non-EBVaGC, EBV-positive tumors showed 5-fold to 10-fold higher density of TILs in both tumor and stroma and substantially elevated CD8+ T cell to Tregulatory cell ratio. The memory subtypes of CD8+ and CD4+ T cells were upregulated in EBVaGC tumors and stromal tissue compared to non-EBVaGC. CONCLUSIONS: The incidence of surgically resected EBVaGC at our center was 4%. EBVaGC tumors harbor elevated levels of TILs, including memory subtypes, within both tumor and tumor-related stroma. Robust TIL presence and upregulated PD-L1 positivity in EBVaGC may portend promising responses to immunotherapy agents. Further investigation into routine EBV testing and TIL phenotype of patients with gastric cancer to predict response to immunotherapy may be warranted.


Subject(s)
Epstein-Barr Virus Infections , Stomach Neoplasms , Humans , Herpesvirus 4, Human/genetics , Herpesvirus 4, Human/metabolism , Epstein-Barr Virus Infections/complications , B7-H1 Antigen/metabolism , Stomach Neoplasms/pathology , Biomarkers
10.
Alzheimers Dement ; 20(3): 2262-2272, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38270275

ABSTRACT

Individuals with Down syndrome (DS) have a partial or complete trisomy of chromosome 21, resulting in an increased risk for early-onset Alzheimer's disease (AD)-type dementia by early midlife. Despite ongoing clinical trials to treat late-onset AD, individuals with DS are often excluded. Furthermore, timely diagnosis or management is often not available. Of the genetic causes of AD, people with DS represent the largest cohort. Currently, there is a knowledge gap regarding the underlying neurobiological mechanisms of DS-related AD (DS-AD), partly due to limited access to well-characterized brain tissue and biomaterials for research. To address this challenge, we created an international consortium of brain banks focused on collecting and disseminating brain tissue from persons with DS throughout their lifespan, named the Down Syndrome Biobank Consortium (DSBC) consisting of 11 biobanking sites located in Europe, India, and the USA. This perspective describes the DSBC harmonized protocols and tissue dissemination goals.


Subject(s)
Alzheimer Disease , Down Syndrome , Humans , Down Syndrome/genetics , Biological Specimen Banks , Alzheimer Disease/genetics , Brain , Europe
11.
Plant Biotechnol J ; 22(2): 427-444, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38032727

ABSTRACT

Plants are sessile and therefore have developed an extraordinary capacity to adapt to external signals. Here, the focus is on the plasticity of the plant cell to respond to new intracellular cues. Ketocarotenoids are high-value natural red pigments with potent antioxidant activity. In the present study, system-level analyses have revealed that the heterologous biosynthesis of ketocarotenoids in tomato initiated a series of cellular and metabolic mechanisms to cope with the formation of metabolites that are non-endogenous to the plant. The broad multilevel changes were linked to, among others, (i) the remodelling of the plastidial membrane, where the synthesis and storage of ketocarotenoids occurs; (ii) the recruiting of core metabolic pathways for the generation of metabolite precursors and energy; and (iii) redox control. The involvement of the metabolites as regulators of cellular processes shown here reinforces their pivotal role suggested in the remodelled 'central dogma' concept. Furthermore, the role of metabolic reprogramming to ensure cellular homeostasis is proposed.


Subject(s)
Carotenoids , Solanum lycopersicum , Carotenoids/metabolism , Solanum lycopersicum/genetics , Metabolic Reprogramming , Plants/metabolism , Homeostasis
12.
Gait Posture ; 108: 56-62, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37988887

ABSTRACT

BACKGROUND: Ankle joint stiffness and viscosity are fundamental mechanical descriptions that govern the movement of the body and impact an individual's walking ability. Hence, these internal properties of a joint have been increasingly used to evaluate the effects of pathology (e.g., stroke) and in the design and control of robotic and prosthetic devices. However, the reliability of these measurements is currently unclear, which is important for translation to clinical use. RESEARCH QUESTION: Can we reliably measure the mechanical impedance parameters of the ankle while standing and walking? METHODS: Eighteen able-bodied individuals volunteered to be tested on two different days separated by at least 24 h. Participants received several small random ankle dorsiflexion perturbations while standing and during the stance phase of walking using a custom-designed robotic platform. Three-dimensional motion capture cameras and a 6-component force plate were used to quantify ankle joint motions and torque responses during normal and perturbed conditions. Ankle mechanical impedance was quantified by computing participant-specific ensemble averages of changes in ankle angle and torque due to perturbation and fitting a second-order parametric model consisting of stiffness, viscosity, and inertia. The test-retest reliability of each parameter was assessed using intraclass correlation coefficients (ICCs). We also computed the minimal detectable change (MDC) for each impedance parameter to establish the smallest amount of change that falls outside the measurement error of the instrument. RESULTS: In standing, the reliability of stiffness, viscosity, and inertia was good to excellent (ICCs=0.67-0.91). During walking, the reliability of stiffness and viscosity was good to excellent (ICCs=0.74-0.84) while that of inertia was fair to good (ICCs=0.47-0.68). The MDC for a single subject ranged from 20%- 65% of the measurement mean but was higher (>100%) for inertia during walking. SIGNIFICANCE: Results indicate that dynamic measures of ankle joint impedance were generally reliable and could serve as an adjunct clinical tool for evaluating gait impairments.


Subject(s)
Ankle Joint , Walking , Humans , Ankle Joint/physiology , Reproducibility of Results , Walking/physiology , Ankle , Standing Position , Biomechanical Phenomena
13.
IEEE Int Conf Rehabil Robot ; 2023: 1-6, 2023 09.
Article in English | MEDLINE | ID: mdl-37941210

ABSTRACT

Most commercial ankle-foot orthoses (AFOs) are passive structures that cannot modulate stiffness to assist with a diverse range of activities, such as stairs and ramps. It is sometimes possible to change the stiffness of passive AFOs through reassembly or benchtop adjustment, but they cannot change stiffness during use. Passive AFOs are also limited in their ankle mechanics and cannot replicate a biomimetic, nonlinear torque-angle relationship. Many research labs have developed ankle exoskeletons that show promise as viable alternatives to passive AFOs, but they face challenges with reliability, mass, and cost. Consequently, commercial translation has largely failed to date. Here we introduce the Variable Stiffness Orthosis (VSO), a quasi-passive variable stiffness ankle-foot orthosis that strikes a balance between powered and passive systems, in terms of mass, complexity, and onboard intelligence. The VSO has customizable torque-angle relationships via a cam transmission, and can make step-to-step stiffness adjustments via motorized reconfiguration of a spring support along a lead-screw. In this work, we introduce two versions: a nominal and a stiff prototype, which differ primarily in their mass and available stiffness levels. The available torque-angle relationships are measured on a custom dynamometer and closely match model predictions. The experimental results showed that the prototypes are capable of producing ankle stiffness coefficients between 9 - 330 Nm/rad.


Subject(s)
Ankle , Foot Orthoses , Humans , Gait , Reproducibility of Results , Ankle Joint , Biomechanical Phenomena
14.
Sci Robot ; 8(83): eadg3705, 2023 10 25.
Article in English | MEDLINE | ID: mdl-37851817

ABSTRACT

One challenge to achieving widespread success of augmentative exoskeletons is accurately adjusting the controller to provide cooperative assistance with their wearer. Often, the controller parameters are "tuned" to optimize a physiological or biomechanical objective. However, these approaches are resource intensive, while typically only enabling optimization of a single objective. In reality, the exoskeleton user experience is likely derived from many factors, including comfort, fatigue, and stability, among others. This work introduces an approach to conveniently tune the four parameters of an exoskeleton controller to maximize user preference. Our overarching strategy is to leverage the wearer to internally balance the experiential factors of wearing the system. We used an evolutionary algorithm to recommend potential parameters, which were ranked by a neural network that was pretrained with previously collected user preference data. The controller parameters that had the highest preference ranking were provided to the exoskeleton, and the wearer responded with real-time feedback as a forced-choice comparison. Our approach was able to converge on controller parameters preferred by the wearer with an accuracy of 88% on average when compared with randomly generated parameters. User-preferred settings stabilized in 43 ± 7 queries. This work demonstrates that user preference can be leveraged to tune a partial-assist ankle exoskeleton in real time using a simple, intuitive interface, highlighting the potential for translating lower-limb wearable technologies into our daily lives.


Subject(s)
Exoskeleton Device , Robotics , Ankle/physiology , Biomechanical Phenomena , Ankle Joint/physiology
15.
Neurobiol Dis ; 188: 106332, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37890559

ABSTRACT

Down syndrome (DS) is a genetic disorder caused by triplication of human chromosome 21. In addition to intellectual disability, DS is defined by a premature aging phenotype and Alzheimer's disease (AD) neuropathology, including septohippocampal circuit vulnerability and degeneration of basal forebrain cholinergic neurons (BFCNs). The Ts65Dn mouse model recapitulates key aspects of DS/AD pathology, namely age-associated atrophy of BFCNs and cognitive decline in septohippocampal-dependent behavioral tasks. We investigated whether maternal choline supplementation (MCS), a well-tolerated treatment modality, protects vulnerable BFCNs from age- and genotype-associated degeneration in trisomic offspring. We also examined the effect of trisomy, and MCS, on GABAergic basal forebrain parvalbumin neurons (BFPNs), an unexplored neuronal population in this DS model. Unbiased stereological analyses of choline acetyltransferase (ChAT)-immunoreactive BFCNs and parvalbumin-immunoreactive BFPNs were conducted using confocal z-stacks of the medial septal nucleus and the vertical limb of the diagonal band (MSN/VDB) in Ts65Dn mice and disomic (2N) littermates at 3-4 and 10-12 months of age. MCS trisomic offspring displayed significant increases in ChAT-immunoreactive neuron number and density compared to unsupplemented counterparts, as well as increases in the area of the MSN/VDB occupied by ChAT-immunoreactive neuropil. MCS also rescued BFPN number and density in Ts65Dn offspring, a novel rescue of a non-cholinergic cell population. Furthermore, MCS prevented age-associated loss of BFCNs and MSN/VDB regional area in 2N offspring, indicating genotype-independent neuroprotective benefits. These findings demonstrate MCS provides neuroprotection of vulnerable BFCNs and non-cholinergic septohippocampal BFPNs, indicating this modality has translational value as an early life therapy for DS, as well as extending benefits to the aging population at large.


Subject(s)
Alzheimer Disease , Basal Forebrain , Down Syndrome , Humans , Animals , Mice , Aged , Parvalbumins , GABAergic Neurons , Choline O-Acetyltransferase , Disease Models, Animal , Nerve Degeneration , Dietary Supplements , Choline
16.
Environ Sci Technol ; 57(41): 15301-15313, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37796725

ABSTRACT

Adverse effects associated with chemical exposures during pregnancy include several developmental and reproductive disorders. However, considering the tens of thousands of chemicals present on the market, the effects of chemical mixtures on the developing fetus is still likely underestimated. In this critical review, we discuss the potential to apply innovative biomonitoring methods using high-resolution mass spectrometry (HRMS) on placenta to improve the monitoring of chemical exposure during pregnancy. The physiology of the placenta and its relevance as a matrix for monitoring chemical exposures and their effects on fetal health is first outlined. We then identify several key parameters that require further investigations before placenta can be used for large-scale monitoring in a robust manner. Most critical is the need for standardization of placental sampling. Placenta is a highly heterogeneous organ, and knowledge of the intraplacenta variability of chemical composition is required to ensure unbiased and robust interindividual comparisons. Other important variables include the time of collection, the sex of the fetus, and mode of delivery. Finally, we discuss the first applications of HRMS methods on the placenta to decipher the chemical exposome and describe how the use of placenta can complement biofluids collected on the mother or the fetus.


Subject(s)
Exposome , Placenta , Pregnancy , Female , Humans , Biological Monitoring , Mass Spectrometry , Fetus
17.
Br J Radiol ; 96(1152): 20230296, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37747290

ABSTRACT

OBJECTIVE: Vascular and bleeding complications after transcatheter aortic valve implantation (TAVI) are common and lead to increased morbidity and mortality. Analysis of plaque at the arterial access site may improve prediction of complications. METHODS: We investigated the association between demographic and procedural risk factors for Valve Academic Research Consortium (VARC-3) vascular complications in patients undergoing transfemoral TAVI with use of a vascular closure device (ProGlide® or MANTA®) in this retrospective cohort study. The ability of pre-procedure femoral CT angiography to predict complications was investigated including a novel method of quantifying plaque composition of the common femoral artery using plaque maps created with patient specific X-ray attenuation cut-offs. RESULTS: 23 vascular complications occurred in the 299 patients in the study group (7.7%). There were no demographic risk factors associated with vascular complications and no statistical difference between use of closure device (ProGlide® vs MANTA®) and vascular complications. Vascular complications after TAVI were associated with sheath size (OR 1.36, 95% CI 1.08-1.76, P 0.01) and strongly associated with CT-derived necrotic core volume in the common femoral artery of the procedural side (OR 17.49, 95% CI 1.21-226.60, P 0.03). CONCLUSION: Plaque map analysis of the common femoral artery by CT angiography reveals patients with greater necrotic core are at increased risk of VARC-3 vascular complications. ADVANCES IN KNOWLEDGE: The novel measurement of necrotic core volume in the common femoral artery on the procedural side by CT analysis was associated with post-TAVI vascular complications, which can be used to highlight increased risk.


Subject(s)
Aortic Valve Stenosis , Transcatheter Aortic Valve Replacement , Humans , Transcatheter Aortic Valve Replacement/adverse effects , Transcatheter Aortic Valve Replacement/methods , Femoral Artery/diagnostic imaging , Femoral Artery/surgery , Retrospective Studies , Aortic Valve Stenosis/diagnostic imaging , Aortic Valve Stenosis/surgery , Tomography, X-Ray Computed , Treatment Outcome , Aortic Valve
18.
Anal Bioanal Chem ; 415(24): 5973-5983, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37530793

ABSTRACT

Azaspiracids (AZAs) are a group of polyether marine algal toxins known to accumulate in shellfish, posing a risk to human health and the seafood industry. Analysis of AZAs is typically performed using LC-MS, which can suffer from matrix effects that significantly impact the accuracy of measurement results. While the use of isotopic internal standards is an effective approach to correct for these effects, isotopically labelled standards for AZAs are not currently available. In this study, 18O-labelled AZA1, AZA2, and AZA3 were prepared by reaction with H218O under acidic conditions, and the reaction kinetics and sites of incorporation were studied using LC-HRMS/MS aided by mathematical analysis of their isotope patterns. Analysis of the isotopic incorporation in AZA1 and AZA3 indicated the presence of four exchangeable oxygen atoms. Excessive isomerization occurred during preparation of 18O-labelled AZA2, suggesting a role for the 8-methyl group in the thermodynamic stability of AZAs. Neutralized mixtures of 18O-labelled AZA1 and AZA3 were found to maintain their isotopic and isomeric integrities when stored at -20 °C and were used to develop an isotope-dilution LC-MS method which was applied to reference materials of shellfish matrices containing AZAs, demonstrating high accuracy and excellent reproducibility. Preparation of isotopically labelled compounds using the isotopic exchange method, combined with the kinetic analysis, offers a feasible way to obtain isotopically labelled internal standards for a wide variety of biomolecules to support reliable quantitation.


Subject(s)
Spiro Compounds , Humans , Kinetics , Reproducibility of Results , Chromatography, Liquid/methods , Spiro Compounds/analysis , Tandem Mass Spectrometry/methods , Isotopes
19.
Radiography (Lond) ; 29(6): 980-983, 2023 10.
Article in English | MEDLINE | ID: mdl-37595528

ABSTRACT

INTRODUCTION: The porcine model shows structural features comparable to that of humans and are routinely used within research, due to the ethical, legal, and practical use of post-mortem human samples. Methods for obtaining high quality and comparable reference data using standardised acquisition protocols are essential. METHODS: The decapitated heads of three adult white sows were subjected to radiographic imaging before and after cranial trauma (9 mm, Heckler and Koch MP5). Digital radiographs were generated using a Siemens MULTIX TOP system with an Agfa digital detector, with foam blocks and sandbags as ancillary equipment. An iterative approach was adopted by the authors to generate reproducible radiographic views from two perpendicular angles. Specimens were kept at 5 °C and wrapped in polythene bags to reduce the impact of putrefaction. RESULTS: Standardised head radiography technique was developed for superior-inferior and lateral views demonstrating porcine anatomy. Key parameters included: automatic exposure control for tube current (∼4 mAs), tube voltage of 73 kVp, 100 cm source to image receptor distance, and an anti-scatter grid. Slight variances in specimen morphology, developmental status, and soft tissue changes did not affect imaging outcomes. CONCLUSION: The technique and positioning proposed in this study allows for the acquisition of high quality and reproducible radiographic images for comparable ballistic research datasets. Specimen positioning and centring of the primary beam may be applied across porcine breeds, although individual radiographic parameters may differ according to equipment specifications and specimen size. IMPLICATIONS FOR PRACTICE: Development of a reproducible radiographic technique of porcine heads in forensic and veterinary research.


Subject(s)
Radiographic Image Enhancement , Adult , Humans , Swine , Animals , Female , Radiographic Image Enhancement/methods , Phantoms, Imaging , Radiography
20.
IEEE Trans Robot ; 39(3): 2170-2182, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37304231

ABSTRACT

Positive biomechanical outcomes have been reported with lower-limb exoskeletons in laboratory settings, but these devices have difficulty delivering appropriate assistance in synchrony with human gait as the task or rate of phase progression change in real-world environments. This paper presents a controller for an ankle exoskeleton that uses a data-driven kinematic model to continuously estimate the phase, phase rate, stride length, and ground incline states during locomotion, which enables the real-time adaptation of torque assistance to match human torques observed in a multi-activity database of 10 able-bodied subjects. We demonstrate in live experiments with a new cohort of 10 able-bodied participants that the controller yields phase estimates comparable to the state of the art, while also estimating task variables with similar accuracy to recent machine learning approaches. The implemented controller successfully adapts its assistance in response to changing phase and task variables, both during controlled treadmill trials (N=10, phase RMSE: 4.8 ± 2.4%) and a real-world stress test with extremely uneven terrain (N=1, phase RMSE: 4.8 ± 2.7%).

SELECTION OF CITATIONS
SEARCH DETAIL
...